
Wildcat
                              Software
WinDLL Fastrack: Communications Project

Introduction
Communications Functions
Data Types
Programming Notes
Registering this Disk.

For information on how to use help
choose Help \Using Help.

WinDLL Fastrack: Windows Communications Functions
Function Declarations

Device Control Block Functions DCB Structure
BuildCommDCBSetCommState
GetCommState

Communications Control Functions
OpenComm SetCommBreak
CloseComm ClearCommBreak
EscapeCommFunction

Communications I/O Functions
ReadComm TransmitComm
WriteComm UngetCommChar
FlushComm

Communications Status
GetCommErr ComStat Structure

Monitoring Communications Events
SetCommEventMask
GetCommEventMask

Communications Project Introduction

We have found using windows communications easier than standard basic. Queue
buffers and flow control are accomplished automatically by the windows operating
environment.    Windows controls a communications device using a Device Control
Block which we can update or view during run time.    Load the Windows Terminal
Program, and observe how Microsoft sets up a communications device with the
Device Control Block module of the example project.

Communications Example Modules
Device Control Block:    Demonstrates working with the Device Control Block (DCB)
structure.
Communications Control:    Opening \ Closing communication devices.    Setting signal
lines state.
Communications    I/O:    Transmitting and receiving data from a communications device.   
The Example code is not adequate to use as a terminal, although if you have a modem, use
the example functions to transmit and receive modem control messages.
Communication Status:    Explains the communications status (ComStat) structure, and Bit
Flags for the current device return status.
Communications Events:    Sets and monitors event triggers that can be trapped.

!! CLOSE ANY DEVICE YOU OPEN PRIOR TO EXITING THE PROGRAM!!

Device Control Block    functions:
BuildCommDCB: modify DCB using a mode state.
GetCommState: Get current DCB values.
SetCommState: Set DCB values.

Communications Control functions:
OpenComm: Open a communications device.
CloseComm: Close a communications device.
SetCommBreak: Set the BREAK signal.
ClearCommBreak: Clear the BREAK signal.
EscapeCommFunction: Set other signal lines states.

Communications    I/O functions:
ReadComm: Read data from Receive Queue.
WriteComm: Write data to Transmit Queue.
TransmitCommChar: Send char to head of Transmit Queue.
UngetCommChar: send char to head of Receive Queue.
FlushComm: Flush Transmit \ Receive Queues.

Communication Status function:
GetCommError: Current state, Queue sizes and Error status.

Communications Events functions:
SetCommEventMask: Set event masks to monitor.
GetCommEventMask: Get event occurrence status.

'Windows API Communications Declarations
'Note: Some of these functions require data structures. DCB & ComStat
'Note: Expand this view to avoid word wrapping before COPY ing.

Declare Function BuildCommDCB Lib "User" (ByVal lpDEF$, lpDCB As DCB) As Integer
Declare Function ClearCommBreak Lib "User" (ByVal nCid%) As Integer
Declare Function CloseComm Lib "User" (ByVal ComPort%) As Integer
Declare Function EscapeCommFunction Lib "User" (ByVal nCid%, ByVal nFunc%) As Integer
Declare Function FlushComm Lib "User" (ByVal nCid%, ByVal nQueue%) As Integer
Declare Function GetCommError Lib "User" (ByVal nCid%, lpStat As ComStat) As Integer
Declare Function GetCommEventMask Lib "User" (ByVal nCid%, ByVal nEvtMask%) As
Integer
Declare Function GetCommState Lib "User" (ByVal nCid%, lpDCB As DCB) As Integer
Declare Function OpenComm Lib "User" (ByVal lpComName$, ByVal wInQueue%, ByVal
wOutQueue%) As Integer
Declare Function ReadComm Lib "User" (ByVal nCid%, ByVal lpBuf$, ByVal nSize%) As
Integer
Declare Function SetCommBreak Lib "User" (ByVal nCid%) As Integer
Declare Function SetCommEventMask Lib "User" (ByVal nCid%, ByVal nEvtMask%) As Integer
Declare Function SetCommState Lib "User" (lpDCB As DCB) As Integer
Declare Function TransmitCommChar Lib "User" (ByVal nCid%, ByVal cChar%) As Integer
Declare Function UngetCommChar Lib "User" (ByVal nCid%, ByVal cChar%) As Integer
Declare Function WriteComm Lib "User" (ByVal nCid%, ByVal lpBuf$, ByVal nSize%) As
Integer

BuildCommDCB (lpDef$, lpDCB) as Integer

Uses the a DOS MODE type string lpDef$    to modify the device control block
structure lpDCB values for baudrate, parity, data and stop bits.

Returns    0 if successful.

Example DCB Structure

GetCommState (nCid%, lpDCB)    as integer   

Puts the device control block data of device specified by nCid% into the structure
lpDCB

Returns    0 if successful.

Example DCB Structure

SetCommState (lpDCB)    as integer

Sets device control block    specified by the ID field    to values in the DCB structure
lpDCB.

Returns    0 if successful.

Example DCB Structure

'Device Control Block (DCB) Structure

Type DCB
ID    As String * 1
BaudRate    As Integer
ByteSize    As String * 1
Parity    As String * 1 'Parity Values
Stopbits    As String * 1 'Stop Bit Values

RlsTimeout    As Integer
CtsTimeout    As Integer
DsrTimeout    As Integer

'Bit wise controls two bytes with Bit Flag Names

BitWise1    As String * 1
BitWise2    As String * 1

XonChar    As String * 1
XoffChar    As String * 1
XonLim    As Integer
XoffLim    As Integer

PeChar    As String * 1
EofChar    As String * 1
EvtChar    As String * 1
TxDelay    As Integer

End Type

DCB BitWise 1 Flags
fBinary : 1 = 1
fRtsDisable : 1 = 2
fParity : 1 = 4
fOutCtsFlow : 1 = 8
fOutxDsrFlow : 1 = 16
fDummy : 2 = 32 & 64
fDtrDisable : 1 = 128

DCB BitWise 2 Flags
fOutX : 1 = 1
fInX : 1 = 2
fPeChar : 1 = 4
fNull : 1 = 8
fChEvt : 1 = 16
fDtrFlow : 1 = 32
fRtsFlow : 1 = 64
fDummy2 : 1 = 128

Parity    Value Flags
0 = None
1 = Odd
2 = Even
3 = Mark
4 = Space

StopBit Value Flags
0 = 1 Stop bit
1 = 1.5 Stop bits
2 = 2 Stop bits

OpenComm    (lpCommName$, wInQueue%, wOutQueue%)    as integer

Opens the communications device lpCommName$ and sets the returns the device
id.    Sets Receive Queue buffer size to wInQueue% bytes, and Transmit Queue
buffer size to wOutQueue% bytes.

Returns: Device ID or Negative if not successful.

Example Error Codes Device ID

OpenComm Return Errors
-1 Invalid Device ID
-2 Already open.
-3 Not Opened.
-4 Unable to allocate queues.
-5 Error in parameters
-10 Hardware not present.
-11 Invalid Data or Stop bit values.
-12 Invalid baudrate.

CloseComm    (nCid%)    as integer

Closes the communications device nCid% after transmitting what is in the queue.   
Also frees allocated queue space.

Returns    0 if successful.

Example

SetCommBreak    (nCid%)    as integer

Sets transmission line in break state until ClearCommBreak function is called for
device identified by nCid%.

Returns    0 if successful.

Example

ClearCommBreak (nCid%)    as integer

Removes transmission line break state for device identified by nCid%.

Returns    0 if successful.

Example

EscapeCommFunction    (nCid%,    nFunc%)    as integer

Specifies extended functions nFunc% for device nCid%.

Returns    0 if successful.

Example

FlushComm (nCid%,    nQueue%)    as integer

Flushes the Queue nQueue% for device nCid%.

Returns    0 if successful.

Example

ReadComm    (nCid%, lpBuf$, nSize%)    as integer

Copies the number of characters specified by nSize% from the nCid% device into
the buffer lpBuf$.

Returns number of characters read. Negative number indicates an error,
Abs(return%) = number of characters read.    Use GetCommError function to
determine cause of error.      The return value for parallel ports will be 0.

Example

WriteComm    (nCid%, lpBuf$, nSize%)    as integer

Writes the number of characters specified by nSize% to the nCid% device from the
buffer lpBuf$.    Could delete data in the queue if there is not enough space.    Use
GetCommError to determine space,    OpenComm to allocates queue space.

Returns number of characters written. Negative number indicates an error,
Abs(return%) = number of characters sent.    Use GetCommError function to
determine cause of error.

Example

TransmitCommChar    (nCid%, cChar%)    as integer

Places the character cChar% at the head of the transmit queue of device nCid% for
immediate transmission.

Returns    0 if successful.
Example Using BOOL, BYTE and Char Data

UngetCommChar (nCid%, cChar%)    as integer

Places the character specified cChar% in the receive queue of device nCid% to be
the next character to be read from the queue.      Can not make consecutive calls to
UngetCommChar.

Example Using BOOL, BYTE and Char Data

GetCommError (nCid%, lpStat   )    as integer

Clears lock placed on the communications port when an error occurs. Places the
current status of the device nCid% in the structure lpStat.    Also returns all error
codes occurring since last GetCommError call.

Returns 0 if no error occurred or    Bitwise Error Code

Example Working with Bitwise Data

'Communications Status Structure
used by GetCommError

Type ComStat

StatusByte    As String * 1 'Bitwise status
cbInQue    As Integer '# chars in receive Q
cbOutQue    As Integer '# chars in transmit Q

End Type

ComStat StatusByte Flags
fCtsHold : 1 = 1
fDsrHold : 1 = 2
fRlsHold : 1 = 8
fXoffHold : 1 = 16
fXoffSent : 1 = 32
fEOF : 1 = 64
fTxim : 1 = 128

GetCommError Return Codes
1 Receive queue overflow
2 Overrun, lost character
4 Hardware parity error
8 Hardware framing error
16 Hardware break detected
32 Clear-to-send timeout
64 Data-set-ready timeout
128 Receive-line-signal timeout
256 Transmit queue is full
512 Parallel device timeout
1024 Parallel device I/O error
2048 Parallel device not selected
4096 Parallel device out of paper
32678 Invalid mode or nCid value

SetCommEventMask (nCid%, nEvtMask%)    as integer

Enables and retrieves the event mask for device nCid%.    nEvtMask% bits define
which events will be enabled.

Returns Bitwise event mask. Occurrence of an event is a bit = 1.

Example Working with Bitwise Data

GetCommEventMask      (nCid%, nEvtMask%)    as integer

Returns the event mask for device nCid% and clears the mask. Enabled events are
returned in nEvtMask%.    Event values are displayed in the project examples.

Returns    Bitwise value of current events.    Occurrence of an event is a bit = 1.

Example Working with Bitwise Data

cChar Character to be placed in transmit or receive queue.

lpBuf$ String used as communications buffer.    Be sure to allocate the space
designated by the nSize% parameter if Windows will write to this buffer!
ie: lpBuf$ = Space$(nSize%)

lpCommName$    String containing the communication device name .    Formatted
COMn or LPTn.

lpDef$      Control information string.    Format as DOS MODE command.
 ie :"COMn:9600,e,7,2"

lpDCB      Long pointer to the data structure [DCB] for working with Windows' Device
Control Block information.    Declared as 'lpDCB as DCB' in the example code.

lpStat    Long Pointer to the structure (COMSTAT) which receives the device status,
declared as 'lpStat as COMSTAT' in the example code.

nCid%    Communications device identification.    Value of nCid% is returned by the
OpenComm function.

nEvtMask%    - event Bit Flags and Values
Bit Value Title
0 1 Receive any
1 2 Receive specific
2 4 Transmit empty
3 8 Clear-to-send changes state
4 16 Data-set-ready changes state
5 32 Receive-line-signal-detect changes state
6 64 Break received
7 128 Line status error (frame, overrun, parity)
8 256 Ring signal detect
9 512 Printer error

nFunc    extended function codes.
1 = Act as if Xoff character received
2 = Act as if Xon character received
3 = Send request to send signal
4 = Clear request-to-send signal
5 = Send    data-terminal-ready signal
6 = Clear data-terminal-ready signal
7 = Reset device (when possible)

nQueue% - Specifies Queue.    0 = flush the transmit queue.    1 = flush the receive
queue.

nSize% - Specifies the number of characters in a string variable.    If Windows writes
to the String BE SURE it is at least nSize% bytes in length to avoid Unrecoverable
Application Error(s).

wInQueue% specifies the size of the receiving queue.

wOutQueue% specifies the size of the transmitting queue.

Sub BuildCommDCBButton_Click ()

Source code is shipped with registered disks...

Sub GetCommStateButton_Click ()
'Get Device Control Block Information

Source code is shipped with registered disks...

Sub SetCommStateButton_Click ()
'Reset the Device Control Block to values in DCB structure

Source code is shipped with registered disks...

Sub DisplayDCB ()
'Display the values for current DCB structure

Source code is shipped with registered disks...

Sub Bit1FlagIN ()
'Get Bitwise Flags for Bitwise Byte 1

Source code is shipped with registered disks...

Sub OpenCommButton_Click ()

Source code is shipped with registered disks...

Sub CloseCommButton_Click ()

Source code is shipped with registered disks...

Sub SetCommBreakButton_Click ()

Source code is shipped with registered disks...

Sub ClearCommBreakButton_Click ()

Source code is shipped with registered disks...

Sub EscapeCommFunctionButton_Click ()

Source code is shipped with registered disks...

Sub FlushCommButton_Click ()
'Flush a communications queue

Source code is shipped with registered disks...

Sub ReadCommButton_Click ()
'Read Data from Receive Queue

Source code is shipped with registered disks...

Sub TransmitCommCharButton_Click ()
'Force character to top of Transmit Queue

Source code is shipped with registered disks...

Sub UngetCommCharButton_Click ()
'Write a character to the Receive Queue

Source code is shipped with registered disks...

Sub WriteCommButton_Click ()

Source code is shipped with registered disks...

Sub GetCommEventMaskButton_Click ()

Source code is shipped with registered disks...

Sub SetCommEventMaskButton_Click ()

Source code is shipped with registered disks...

Sub GetCommErrorButton_Click ()
'Get Communications Error Status

Source code is shipped with registered disks...

Sub GCE_Status_Change ()   
'Evaluate Communication Status Return

Source code is shipped with registered disks...

Sub lpStat_StatusByte_Change ()
'Evaluate ComStat Status Byte Flags

Source code is shipped with registered disks...

Wildcat
                              Software
WinDLL Fastrack:    Programming Notes

Windows Dynamic Link Libraries.
Windows & Visual Basic Data Types
Naming conventions used in sample programs.
Unrecoverable Application Errors.
Working with Bit wise data.
BYTE,BOOL & Char data types.
Registering this Disk.

For information on how to use help:
choose Help - Using Help.

Registering this disk:

Why should YOU register,

You get the most current version of this disk.(We have made improvements!)
You get the source code for the WinDLL programs.
All following updates are only $10.00
You are notified of changes to your disk and about new programmers tools.

Suggested registration price: $19

Wildcat Software
PO Box 2607
Cheyenne, Wyoming 82003
Attn: Windll Fastrack

We welcome any suggestions that will help improve this program, please feel free to write or
contact us on CompuServe.      Our CompuServe Id is 76675,122.

The Window Dynamic Link Libraries

Visual Basic DLL declarations require that we state the Dynamic Link Library where the
function is located.      There apparently are 4 Windows function libraries: Kernel, User,
System and    the GDI.
If you wish to experiment with functions not covered in this release, try referencing one of
those libraries.   

Windows Data Types and Visual Basic Equivalents

The following table lists the Windows data type with respect to using Windows function calls. 
The VB Parameter list recommended types to use as a function parameter or return type.
Use the VB Structure type in structures that the Windows DLL will access.

Windows VB    Parameter VB Structure

BOOL Integer (AND) String * 1
BYTE Integer (AND) String * 1
char Integer (AND) String * 1
dWord Long Long
HANDLE Integer Integer
int Integer Integer
LONG Long Long
LPSTR String ($) String * N
short Integer Integer
void non-TYPE* - -
WORD Integer (+) Integer (+)

See also: Naming conventions; Microsoft Windows Programmers Reference.

Naming conventions: Microsoft Windows Programmers Reference.

The naming conventions used for parameter names in the Microsoft Windows Programmers
Reference were retained in the sample code regardless of data type conversions for Visual
Basic variables.

Mircrosoft's parameter names use an italic prefix to indicate the parameters data type.
Following is a list of Mircrosofts Prefixes, Data Types and resulting Visual Basics type.

Prefix Type Visual Basic Type Example
 b BOOL Integer bStat%
 c BYTE Integer cDriveLetter%
 c char Integer cChar%
 dw LONG Long dwFlag
 f bit flags Bitwise Character String*1 or Integer
 h HANDLE Integer chWnd%
 l LONG Long lParam
 lp LongPointer String ($) lpAppName$
 n Short Integer nSize%
 p Short Integer pMsg
 w Short Integer wUnique%

Naming Conventions:
See Also: Naming conventions used in Mircrosofts Windows Programmers Reference.

The sample programs are oriented to give you a quick understanding of the Windows
functions without forcing you to dissect elaborate program code.      Most of the functions are
designed to operate as separate entities,    although they are assembled in groups where
they can be used together.      Each function is displayed as a named command button and
associated parameter fields.

         
The sample above shows a typical function example.    To test this example you would supply
the field parameters lpAppName, lpKeyName and lpString.    Clicking the
WriteProfileString command button would execute the function with your supplied values. 
The source code for this function would be found in the subroutine
WriteProfileStringButton_Click().    The the controls containing the supplied parameters
are named using the capitol letters of the function name followed by an underscore "_" and
the parameter name.      (WPS_lpAppName,    WPS_lpKeyName,    WPS_lpString and   
WPS_Return)

The subroutine, prior to calling the function, converts all the parameters to the proper data
type, using only local variables, except where data structures are used.
 ie:

lpAppName$ = WPS_lpAppName.Text
lpKeyName$ = WPS_lpKeyName.Text
lpString$                  = WPS_lpString.Text

ret% = WriteProfileString(lpAppName$, lpKeyName$, lpString$)

WPS_Return.Text = Str$(ret%)

Of course, you find the sample code a little more complicated than the above example, but
we kept it as simple as possible while trying to avoid execution errors.

Unrecoverable Application Errors

Making a Dynamic Link Library call removes us from Visual Basics safety blanket and errors
can crash the Windows Operating Environment.    Save your program prior to testing it, or
risk the AGONY OF DELETE.

While writing this code we caused Unrecoverable Application Errors in two ways.

FIRST METHOD: Using an undefined parameter in a function call.
Visual Basic does not require us to define variables prior to their being used.    This can
be a problem if we begin to make calls outside the Visual Basic operating environment. 
If a Windows function returns a value to one of its parameters, we MUST create that
parameter prior to calling the function.      If the parameter is a string BE SURE IT IS AT
LEAST ONE CHARACTER IN LENGTH.    Windows does not like basic's null length strings. 
If the function requests the length of a parameter string, BE SURE THE STRING IS AT
LEAST AS LONG AS YOU SAY IT IS.     

SECOND METHOD: Not declaring a function return type.
This error caused a hour of confusion for us one day.    Every Windows function returns
a value which is 'typed' in the function declaration.

        i.e.      Declare Function GetFocus Lib "Kernel" () as Integer
Not having the 'as Integer' type following the statement would have caused a runtime
error,    if my program hadn't caused a Unrecoverable Application Error first.    This
CRASH can be knarly to find because the 'as type' part of the declaration is usually not
in view on the edit screen.

Working with Bitwise Data
A quick refresher course on    bitwise operations.

Bit operations: Many of the Windows DLL's return values should be read as a Bit Flags.   
Listed below are eight possible bit flags and values.

Bit Position Byte Value Basic Exponential
0 0000 0001     1     2^0
1 0000 0010     2     2^1
2 0000 0100     4     2^2
3 0000 1000     8     2^3
4 0001 0000     16     2^4
5 0010 0000     32     2^5
6 0100 0000     64     2^6
7 1000 0000     128     2^7

If more than one bit flag is set in the byte the value becomes the sum of the flag values.
 Example:    If    Bit #1, Bit #5 and Bit #6 were set then

Byte is    0110 0010       
Value is    2 + 32 + 64    = 98

The basic 'AND' operator allows us to test for Bit Flags.

Example:    Testing Byte 0110 0010 = 98

Byte Value    AND    Test Value        = Result      Bit Flag Set
98 AND 1 = 0 No
98 AND 2 = 2 Yes
98 AND 4 = 0 No

 98 AND 8 = 0 No
98 AND 16 = 0 No
98 AND 32 = 32 Yes

 98 AND 64 = 64 Yes
98 AND 128 = 0 No

The basic exponential allows a fast bit map testing
Example:
            Program..

ByteVal = 98
For bit = 0 to 7

If ByteVal AND 2^bit Then Print "Bit "; bit; " set."
Next

          Prints...
Bit 2 set.
Bit 5 set.
Bit 6 set.

Sending and Receiving the BYTE, BOOL & Char data types.

The C language BYTE, BOOL & Char data types are one byte variables not supported by
Visual Basic, but there is a work around.    Sending BYTE data is quite easy since the you can
pass any BYTE variable as an integer. (the smallest object that can be 'stacked' in the PC)

Receiving a BYTE result is a little more tricky.    Keep in mind that you are receiving an integer
with only one byte of valid information.      We worked our way around this by using the 'And'
operator with an integer equal to 255.

Example: From the GetTempDrive* function that returns a temporary drive letter as a BOOL.

Problem:    We expect a return    value range of 0 to 255 for a BOOL
    But instead we get a    the return value;      ret% = 14915

Solution:    tmpDrive% = ret% And 255            'AND' the return with 255
 ? tmpDrive%  'prints    "67"
 ? Chr$(tmpDrive%)  ' prints    "C"

This example only deals with a single byte.    Integer bit flags are occasionally used by the
windows routines.    You can expect to get a Long with them, also.

The GetTempDrive function is in    WinDLL's example code project    WIN_SYS.

AND the return value of this parameter with 255, see the section on BYTE, BOOL & Char
data types.

We prefer the BASIC    String$ type for parameters, remember to allocate sufficient space
for the return string.    If Windows writes to the variable, remember that the last character in
the string will be a null.

For Structures we must use the VB String * n Type.    If you use String * n types for
parameters remember that the last character in the string is a null.    Make n equal to the
length of the longest expected return string, + 1, for the null character.

A WORD is an unsigned integer.    If you operate on WORD variables, remember that
negative integer values are greater that 32767.    Passing a negative integer as a WORD is
viewed as an unsigned integer by Windows.

A Void is a return only parameter.    Declaring a function without the 'AS TYPE' is equivalent
to a void Windows function.

hWnd is a reserved name in Visual Basic so we substituted chWnd (control handle)

Visual Basic does not support bitflag operations see the section:Working with Bitwise
Data.

